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A computational model of the swimming of a neutrally buoyant organism undergoing 
deformations within a region of fluid is presented. The fluid is regarded as viscous and 
incompressible and the organism as a massless, elastic boundary immersed in this fluid. Fluid 
quantities are represented on a grid (Eulerian description), and the immersed boundary is 
represented by a discrete collection of moving points (Lagrangian description). Computed 
results are presented, along with comparisons with previous asymptotic analysis. 0 1988 

Academic Press, Inc. 

1. INTRODUCTION 

The principal means of aquatic animal locomotion is to pass waves of lateral dis- 
placement down the body. This mode of swimming is observed in large creatures 
such as eels, moderate size nematodes (thread worms), and microorganisms with 
flagella such as spermatozoa. The forces involved in the propulsion of these 
organisms are very different; in the first case, inertial effects dominate, in the last 
viscous effects dominate, and in the second both are comparable. An important dis- 
tinction between these flows is the Reynolds number, a non-dimensional quantity 
which describes the ratio of inertial forces to viscous forces, given by 

where L is a typical length, U a typical velocity, and v is the kinematic viscosity p/p. 
The Reynolds number of a swimming eel is about 104, the nematode’s about 1, and 
that of a spermatozoa about 10P3. For an interesting and extensive classification of 
Reynolds numbers and swimming modes of different aquatic animals, we refer the 
reader to Lighthill [l] and Childress [2]. 

The speed, direction, and efficiency of swimming depend upon many parameters 
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including the Reynolds number and the wavelength, amplitude, and frequency of 
undulation. We would like to know how the overall swimming speed of the 
organism relates to the speed of the wave, and how much energy is dissipated in the 
swimming effort. 

In this paper we present a computational model of swimming of a neutrally 
buoyant organism undergoing deformations within a region tilled with fluid. The 
fluid and the organism constitute a coupled mechanical system; the organism’s 
motion is determined by that of the fluid, but at the same time the organism exerts 
force on the fluid and alters its motion. 

The fluid is regarded as viscous and incompressible, and the organism as a 
massless, elastic boundary immersed in this fluid. The state of the fluid at time t is 
given by its velocity field u(x, t), and the state of the organism is given by the 
configuration of its material points X(s, t), where s is an arc-length parameter. The 
flow is governed by the incompressible Navier-Stokes equations 

P[g+“.v”]= -Vp+@u+F(x, t) 

v.u=o 

where p = density, /A = viscosity, u = velocity, p = pressure, and F(x, 1) is the exter- 
nal force per unit volume applied to the fluid. 

The first equation is Newton’s law: mass density x acceleration = force density. 
The second states that the fluid is incompressible. The forces which appear are 
those due to pressure, viscosity, and the external force F(x, t). The external force 
will be used in this work to represent the force of the organism on the fluid. It is a 
delta-function layer of force supported only by the region of fluid which coincides 
with material points of the organism; away from these points the external force is 
zero. Since the organism is elastic and massless, the strength of the delta-function 
force layer is determined at each instant by the local configuration of the organism. 
Representing the immersed swimming organism as a singular force field in the fluid 
domain will be the basis of the computational model. 

The boundary condition to be satisfied at the surface X(s, t) defined by the 
organism is 

& X(s, t) = u(X(s, t), t). 

This boundary condition states that the velocity of a point on the organism must be 
the same as the fluid velocity at that point. 

The solution of the foregoing system of equations is difficult since the boundary 
will be undergoing time-dependent motions, and its position at any instant will 
depend upon the solution of the fluid equations, which are themselves nonlinear. 

Previous theoretical work in this area has been limited to simplified versions of 
the fluid equations or asymptotic analysis. For example, the classic work of G. I. 
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Taylor [3] analyzes the swimming of an infinitely long flagella undergoing 
infinitely small, constant amplitude oscillations in a totally viscous fluid. This work 
was later extended by E. 0. Tuck [4] to account for non-zero Reynolds numbers. 
In Section 7 of this paper we compare the results of our numerical studies to the 
asymptotic results of Taylor and Tuck. 

The computational method presented in this paper solves the full Navier-Stokes 
equations in a two-dimensional domain of fluid in which an organism undergoing 
time-dependent motions is immersed. The organism consists of a single filament. No 
restriction is imposed on the size or position-dependence of the amplitude of 
oscillation, nor on the Reynolds number of the flow. We do not rely on the fact that 
the motion has reached a steady state, and we are therefore able to model transient 
effects. To our knowledge, this is the first computational method which makes these 
claims. 

2. REPRESENTATION OF FLUID AND ORGANISM 

We cover our fluid domain with a square grid on which we define the fluid quan- 
tities at grid points: I$ = u(i Ax, j Ax, n At), p$, and F$ where i, j= 1,2,3, . . . . N. 
The swimming organism is modeled by an immersed boundary X(s, t) which is 
discretely represented by a collection of A4 moving points X;, k = 1, 2, . . . . M. The 
points do not coincide with grid points. 
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We use the external force F to represent the force of the organism on the fluid. F 
must be singular because the immersed boundary exerts a finite force in zero 
volume of the fluid. Hence, F is a distribution, 

F(x, t) = 1 f(s, 1) 6(x - X(s, t)) ds, 
B 

(2.2) 

where 6 is the two-dimensional delta function and f(s, t) is the density of the boun- 
dary force with respect to the measure ds. The boundary is considered to be elastic 
and massless so the force f(s, t) is determined by the boundary configuration at 
time t. (The derivation of f will be discussed later.) Note that despite the integral 
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representation, F(x, t) is singular since we are integrating the two-dimensional delta 
function over only one dimension. 

Since the fluid is viscous, the velocity field is continuous across the boundary. 
This implies that the velocity of a material point of the organism must be equal to 
the velocity of the fluid at that point: 

$= u(X(s, t), t) = j u(x, t) 6(x - X(s, t)) dx. (2.3) 12 

The integral representation of 8X/& in (2.3) is not singular since the two-dimen- 
sional delta function is integrated over both space dimensions. 

The integral equations (2.2) and (2.3) serve to communicate boundary quantities 
to the grid and fluid quantities to the boundary. These integrals can be discretized 
as sums, 

F; = c f; D&X,) As 
k 

(2.2*) 

U; = 1 u; D,(X,) Ax*, (2.3*) 
17 

where D, is the discrete approximation to the two-dimensional delta function 
introduced by Peskin [S]. D, serves the dual purpose of spreading the boundary 
force to the fluid mesh and interpolating the fluid velocity to boundary points. 

Once F, has been defined, we can update the fluid quantities by calling a sub- 
routine which integrates the Navier-Stokes equations for one-time step on a regular 
grid. The crucial point here is that this subroutine does not see the immersed 
boundary at all except in terms of the force field F,. 

Our immersed boundary is not the computational boundary in the Navier-Stokes 
solver, but a singular force field which alters the equation just via the right-hand 
side. There is no need for complicated discretization of derivatives at grid points 
near the organism or for boundary conditions which change with time. We can 
model complicated motions with a Navier-Stokes solver designed for a regular 
mesh with simple boundary conditions. For this purpose we use Chorin’s finite 
difference scheme on a square, periodic grid. [6] 

3. DERIVATION OF FORCE DENSITY 

The immersed boundary, which is made up of the discrete set of points 
Xl, x2, . ..> X, is elastic and massless. The forces at a point due to the rest of the 
boundary are of two types: 

(1) A spring-like force that asks that the “links” between successive points 
resist compression or expansion from a given arc-length As. 
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(2) A bending-resistant force that asks that the angle formed by neighboring 
links be a given function which changes with position and time. 

Since the boundary is massless, Newton’s laws tell us that at a boundary point we 
have 

0 = Mass x acceleration = Force of fluid on boundary point + Force of 
the rest of the boundary on boundary point 

Therefore, 

- Force of fluid on boundary point = Force of the rest of the boundary on 
boundary point. 

And we have 

Force of boundary point on fluid = Force of the rest of the boundary on 
boundary point. 

The swimming motion, that we will specify, is the time-dependent configuration 
of the organism relative to itself. The actual displacement and swimming speed 
relative to the grid are not preset, but are determined by the coupled equations of 
motion. 

To impose (approximately) a given swimming motion on the immersed boun- 
dary, we use forces that are derived from a time-dependent energy function which 
depends upon the configuration of consecutive triples of points along the boundary. 
A way to guarantee that momentum and angular momentum are conserved is to 
choose an energy function E(X,, Xs, . . . . X,, t) that is invariant under translation 
and rotation. This invariance further emphasizes the fact that the forces will only 
specify the relative configuration of the organism. 

The force acting on the point X, is equal to the negative of the derivative of the 
energy function with respect to Xk: 

f,= -akE=- aE aE [ 1 ax,'& * 

EG,, X,, . . . . X,, t) is chosen such that E 20 and that E = 0 when the boundary 
configuration at time t is as desired. 

We want to specify the arc length between points and the angle formed at each 
point: 

EV,, X,, . . . . X.44~ t) = s, 1 CllXk,, -WI - dsl2 
k 

(Here //.I/ is the Euclidean norm and d is the unit vector (0, 0, l).) 
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Now this is zero when the distance between successive points is ds and the “cur- 
vature” at a point X, is C,(t). We use the cross product instead of (Id2y/dx211 since 
it is important to specify the sense of the angle as well as its magnitude. When 
E=O, C,(t) is approximately equal to ds3(d2y/dx2) as will be shown in the next 
section. The function C,(t) is what establishes the time dependence of the swimming 
motion. 

S, and S2 are stiffness constants which depend upon the arc-length interval As 
and determine how strictly the constraints are enforced. We may view the role of 
the stiffness constants in two ways: 

(1) Physiological parameters. The creature’s muscular structure will tend to 
generate a predetermined swimming motion but the effect of the fluid can alter this 
motion; how much alteration depends on the size of S, and S2. 

(2) Numerical parameters. The swimming motion of the creature (relative to 
itself) is completely specified in advance. Then S, and S, are both infinity. Com- 
putationally, they should be made as large as possible. (Penalty method.) 

The above energy function can be adjusted to enforce many different con- 
figurations, but we concentrate on those of the form y = a(x) sin(lcx - wt), where 
a(x) adjusts the variation of amplitude from head to tail. Appropriate values of 
C,(t) and the stiffness constants S, and S2 will be discussed in the next section. 

4. DERIVATION OF THE DRIVING FUNCTION C,(t) 

The function C,(t) is what establishes the shape and the time dependence of the 
swimming motion. The angles between successive links of length As at time t will be 
specified by 

C,(t) = 2. (X/c + 1 -X,)x@k-Xk-1) 

cz (As)’ sin ul,, 

where vl, is the exterior angle formed by the links (XK+ ,, X,) and (X,, Xk-i). 
Note that this interpretation assumes that the arc-length constraint is working and 
hence that 

IIX k+,-&II = II&-%-,I1 =A. 

Given a curve (x(s), y(s)) parameterized by arc-length s, let O(s) be the angle 
formed by the tangent to the curve and the horizontal axis. In our discrete case, we 
let 0, be the angle formed by the link (X,- , , X,) and the horizontal axis. We then 
have 

8 k+,-ek=dek= Yk. 
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Substituting into the above equation for C,(t), we have 

C,(t) = (As)* sin Yk = (As)* sin dOk. 

Assuming that the links model a continuous curve, we have dOk 4 1, and we 
make the approximation 

sin dOk z dek 

which gives us 

C,(t) z (As)~ dtl, z (As)~ z. 

The continuous variable corresponding to C,(t)/(d.~)~ is c(s, t) = de/&, which is 
called the curvature. Note that the configuration of the creature relative to itself 
(i.e., the shap e is completely determined by specifying the curvature. The differen- ) 
tial equations needed to compute (x(s, t), y(s, t)) from c(s, t) are 

$ = cos e(s, t) 

ay as = sin O(s, 1). 

The integration constant in the 8 equation determines the orientation of the 
creature, and the integration constants in the (x, y) equations determine its 
absolute position in space. 

For comparison with asymptotic theories, we seek a one-parameter family of cur- 
vature functions chosen so that the small amplitude configuration of the creature 
will be 

xts, f) = x,(t) + s + O(2) 

Yb, t)=&Yib, t)+ O(E2), 

where 

It follows that 

y,(s, t) = a(s) sin(rcs - wt). 

ets, t) = Eel(S, t) + o(2) 

c(s, t) = ECl(S, t) + O(E2), 
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where 
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=($- 2 ) K a(s) sin(rcS-Wf)+2rcgcos(rcS-OI). 

In the special case a = constant, this reduces to 

cI(s, t) = - lc’a sin(rcs - ot). 

In either case, we have 

C,(t) = GASI Cl(Sk, t), 

where 

sk = k As. 

(In practice we set E = 1 and achieve small amplitude, if desired, by adjusting a.) We 
shall use the above prescription for C,(t) even in the large-amplitude case. The 
resulting shape of the boundary will then be more complicated, however. 

5. STIFFNESS CONSTANTS 

For a fixed As # 0, the energy function was given .as 

EW,, x,, .--, X,,t)=S,~CllX~+~-Xkll-Asl~ 
k 

+ s2 c [j. txk + 1 -xk)x (Xk-Xk-,)-Ck(f)12. 
k 

The motion will tend to minimize this energy, but how strictly this is enforced 
depends upon the magnitude of the constants S, and S2. S, and S2 are independent 
of space and time, but, as we now show, they do depend upon the arc-length inter- 
val As. 

We would like the energy function given above to reflect material properties of 
the elastic boundary which are independent of the arc-length As. We therefore 
require that the energy function E converge to a finite limit as As -+ 0. Namely, 

where the integration is over the continuous immersed boundary, c(s, t) is the cur- 
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vature function introduced above, and n is the unit rightward-pointing normal to 
the curve. 

By rewriting each of the finite sums in the original energy function 
m,, x,, .‘., X,, t) in the form of a Riemann sum, we find that in order for 
convergence to occur 

s, = S,(h-’ 

s* = s,(hy, 

where 3, and 3, are constant. It is important that the constants 3, and 3, be 
chosen large enough so that the desired configuration is closely held. 

6. NUMERICAL METHOD 

The state of the coupled mechanical system at time t is determined by the 
velocity field of the fluid u(x, t) and the positions of the material points of the 
immersed boundary X(s, t). Computationally, at the end of the nth time step, we 
are given u; and X;. From these we must advance another time step to produce 
u;+’ and X, n + ‘. The procedure is 

(1) Determine the force density f; defined on boundary points. 

(2) Spread the force density to the grid to get Ft. 

(3) Solve the Navier-Stokes equations for I$+ ‘. 

(4) Interpolate the fluid velocity field to boundary points and move the 
boundary at this local fluid velocity: 

Step ( 1) is the “boundary segment” of the code, and it entails solving an 
unconstrained minimization problem at each time step. This enhances the 
numerical stability of the method, as explained in Peskin [S]. For this 
minimization, we use a modified Newton’s method outlined in Dennis and Schnabel 
[73. Step (3) is the fluid segment of the code, which uses Chorin’s finite difference 
scheme [6]. The Poisson equation for the pressure field which arises is solved using 
a fast Fourier transform. Steps (2) and (4) involve the use of the discrete delta 
functions, which serve the purpose of “communicating” information between the 
boundary and the fluid. 

This code has been implemented on Boeing’s CRAY XMP and the Minnesota 
Supercomputer Center’s CRAY 2. Using a 64 x 64 grid, the fluid segment of the 
code (step (3)) requires, on the average, 0.02 s CPU time, the force segment 
(step (1)) requires 0.09 s, and the delta function segment (steps (2) and (4)) requires 
0.04 s. Therefore, one time step requires about 0.15 s CPU time on the 
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CRAY XMP. (The timings on the CRAY 2 were almost identical.) These timings 
reflect the fact that the fluid segment of the code has been completely vectorized. 

For detailed explanation of the implementation of these algorithms, see Fauci 
PI. 

7. SWIMMING SHEET PROBLEM 

In this section we apply our computational model to the infinite swimming sheet 
problem. We compare our results with the asymptotic analysis done for small 
amplitude motion by Taylor [3] and Tuck [4]+ 

This problem involves the swimming of a doubly infinite sheet, which undergoes 
periodic deformations about an unperturbed position y = 0. The sheet oscillates 
with a constant amplitude, wavelength, and frequency. It is surrounded by a viscous 
fluid on both sides. For a given amplitude, wavelength, and frequency of motion, 
we would like to know the speed at which the sheet propels itself through the fluid 
and how much energy is dissipated. 

A two-dimensional slice of the sheet is of the form 

y = b sin( Icx - of) 

with respect to “axes which are fixed relative to the mean position of the particles of 
the sheet” [3]. This shall be referred to as the organism’s frame of reference. 

The above sine wave travels to the right with phase speed V= W/K and period 
27r/o. We let U be the resulting mean swimming speed of the sheet over a period. 
(The swimming speed is defined to be the mean speed of the fixed axes in the 
organism frame of reference relative to the axes fixed in the frame of reference where 
the fluid at infinity is undisturbed.) It is important to note that U is not given, but 
will be determined by the fluid equations. A useful, non-dimensional quantity to 
study is the ratio of swimming speed to wave speed U/V. This ratio also measures 

U number of wavelengths travelled 
-= 
V period 

G. I. Taylor considered the case of zero Reynolds number flow, where the forces 
due to viscosity completely dominate those due to inertia. This is a very reasonable 
assumption for the study of propulsion of microorganisms, where the Reynolds 
number is typically 0(10d4). This assumption greatly simplifies the governing fluid 
equations; the nonlinear convection term is dropped. 

Assuming that the sheet is inextensible, and using the non-dimensional scaling 
K = 1 for simplicity, Taylor arrived at 

u, = ; b2 cos 2(x - ot) + O(b4) 

u,~ = - wb cos(x - ot) + O(b3). 
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Here (u,, II,) is the velocity vector of the boundary point (x,, y,), and x is the mean 
position of x,~ in the organism frame of reference. Notice that if only terms up to 
order h are retained 

24, = 0 

u,y = -cob cos(x - cot). 

The particles oscillate in a path parallel to the y-axis. 
However, retaining those powers up to b2 and integrating, we have 

x, = x - +b2 sin 2(x - wt) 

y, = b sin(x - ot). 

The particles traverse paths of figure eights. This will be observed in our case 
studies of the next sections. 

Using an asymptotic expansion of the stream function, Taylor concluded 

%=;b’(l-;b2)+O(b*) 

and for arbitrary K, 

Up to first order in b, the sheet does not swim! 
The dissipation of energy can be computed by calculating the work done per unit 

area of the sheet against the viscous stress. The mean value (over a period 27410) of 
the rate of working was calculated by Taylor to be 

w= 2b2c02Kp, 

where p is the viscosity of the fluid. Here, the expansion only up to O(brc) was used. 
Taylor’s calculations are designed for small amplitude motion, and zero Reynolds 

number flow. In his paper of 1968, E. 0. Tuck analyzed the case of small amplitude 
motion taking inertia into account. 

The Reynolds number defined for the swimming sheet problem is 

where v = p/p is the kinematic viscosity, O/K is a typical velocity, and l/rc is a 
typical length. Tuck found that 
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;+2 1+ [ $1 + O(b4K4) 

F(R) = 
1 + JKS II2 1 2 . 

The mean rate of working as calculated by Tuck is 

W= ,ub202rc( I + F(R)). 

Note that for R = 0, the above reduces to Taylor’s expression for W. 

Computational Studies 

In order to model the infinite swimming sheet, we let the computational domain 
be a square whose side equals one wavelength of the sheet. The immersed boundary 
extends from one end of the domain to the other. The periodicity condition will 
simulate the infinite extent of the sheet. (We could have explicitly linked the first 
and last point of the immersed boundary by coupling these points in the energy 
function, with minor changes to the code. Ultimately, however, our goal is to model 
organisms of finite extent.) The velocity field is initiaiized to zero. 

In the parameter studies I and II, the values in Table I were fixed, but the 
amplitude of oscillation was varied. As shown in Table I, the Reynolds number in 
study I is approximately 2.5, and in study II it is approximately 0.6. The Reynolds 
number, based on wavelength, is calculated as 

R=-$. 

The calculations were performed on a 64 x 64 grid with 128 points comprising the 
immersed boundary. In each of the numerical experiments, the code was run until a 
(periodic) steady state was reached, which took at most five periods. The swimming 
velocity U was arrived at by first averaging the x-direction velocity of each boun- 
dary point over a period and then taking the average of these values over all points 
of the creature. 

TABLE I 

Parameter Studies 

Parameter Symbol Units I II 

Wave no. K cm-’ 10n 10X 
Frequency w s-1 an an 
Density P gm/cm3 1 1 
Viscosity P gm/cm s 0.01 0.04 
Reynolds no. R - 2.5 0.6 
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AMPLITUDE 1N CENTIMETERS 
SBLID CURVE TUCK - DASnED CURVE TRYLBR 

FIG. 1. Parameter study 1. Computed values of U/V for various amplitudes are plotted against 
Taylor’s formula (dashed curve) and Tuck’s formula (solid curve), R z 2.5. 

SWIMMING Sf'EEO/WAVE SPEED 
NJ=. 04 

FiMPLITUDE IN CENTIMETERS 
SBllO CURVE 1UCK - DRSHED CURYE TRYLBR 

FIG. 2. Parameter study II. Computed values of U/V for various amplitudes are plotted against 
Taylor’s formula (dashed curve) and Tuck’s formula (solid curve), Rx 0.6. 
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FIG. 3. Parameter Study I. Computed values of mean rate of working for various amplitudes are 
plotted against Taylor’s formula (dashed curve) and Tuck’s formula (solid curve), R x 2.5. 

Figure 1 compares the results of parameter study I (R z 2.5) with the asymptotic 
formulas for U/V of Taylor (dashed curve) and Tuck (solid curve). The *‘s indicate 
the computed values U/V for different amplitude values. Notice that both Taylor’s 
and Tuck’s asymptotic predictions are better for smaller amplitudes, as expected. 
However, Tuck’s formula, which takes inertia into account, fits the computed 
values better than Taylor’s formula. 

Figure 2 shows the results from parameter study II. Here Taylor’s 
approximations for the larger amplitudes are a bit better than Tuck’s since the 
Reynolds number is closer to zero, and Taylor’s asymptotic analysis was carried out 
to O(~J~K~), whereas Tuck’s was carried out to O(~*K*). (Here b is the amplitude of 
motion.) 

Figure 3 compares the computed rate of working in parameter study I with the 
asymptotic formulas of Taylor (dashed curve) and Tuck (solid curve). Similar 
results were obtained in parameter study II. 

Our computations indicate that the asymptotic analysis overestimates the swim- 
ming speeds, and underestimates the rate of working. We see that the analysis of 
Taylor and Tuck is sufficient for small amplitude and slope oscillations, but other 
methods, such as this computational model, must be used to study larger amplitude 
propulsion. 
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8. CASE SIUDIES 

In this section we conduct two case studies of swimming of an oscillating 
filament. In these two cases, we shall choose an energy function which will tend to 
impose constant amplitude from head to tail. However, the method does not 
restrict us to this constant amplitude situation. 

For both cases the energy function is chosen so that the time-dependent 
configuration of the organism relative to itself is of the form 

y z b sin( r.0 - Ot). 

The Reynolds number of the flow is given by 

R=z 
WC* 

where v = p/p is the kinematic viscosity. 
We set density at p = 1 gm/cm3, viscosity p = 0.01 gm/(s . cm), w  = 871 s- ‘, and 

K = 10~ cm -I. Therefore, the Reynolds number is 

R z 2.5. 

In this first case study, the amplitude of the waving motion is very small; 1% of 
the wavelength. In the second case, we study a more substantial amplitude of 
motion, which is 10% of the wavelength. 

8.1. Small Amplitude Case 

The following numerical experiment was performed on the CRAY-2 at the Min- 
nesota Supercomputer Center, using a 64 x 64 grid, with 128 points constituting the 
immersed boundary. Periodic boundary conditions were imposed. The sine wave 
parameters K and w  were set at the above values, and the amplitude was taken to 
be 

b = 0.002 cm. 

The length of a side of the square computational domain is 0.2 cm, which is equal 
to one wavelength of the filament. Our reason for setting up the computation in this 
manner is to compare our results with the asymptotic analysis done for the infinite 
swimming sheet problem, which was presented in the previous section. With 64 grid 
points in each direction, we have 

One special feature of the computational method is its ability to handle sub-grid 
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TRRJECTBRY OF l/2 PBINT 
LAB0RRT0RY FRAME 0F REF. 
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‘VO%85 0.09723 0.09760 0.09798 0. 
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FIG. 4. Trajectory of the material point X, from t =0 to t = 1 s in the small amplitude case 
b = 0.002 cm. The curve was traversed from right to left. 

motion. The material points of the immersed boundary do not coincide with grid 
points. In this particular case, the amplitude of the wave is less than two-thirds of 
the mesh spacing. 
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0.360 

r 

MEAN SWIMMING SPEED 
UNITS - loam-3 CM/SEC 

0.ooa.k 1.uu z.uu s.uu 

PER100 

FIG. 5. The mean swimming speed averaged over each of the four periods. Note the acceleration 
from rest in the first period, and then the establishment of a steady periodic state. 
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The particles of the immersed boundary are initialized to lie along the specified 
sine wave, with centerline corresponding to the center of the computational 
domain. The particles extend from one side of the domain to the other. The arc- 
length parameter used is 

As = 4 Ax = 0.0015225 cm. 

The stiffness parameters used are 

S1 = lO,OOO(As)-’ 

Sz = 10 (As)-5. 

The fluid velocities are initialized to zero. 
The phase speed of the sine wave is 0.8 cm/s, and the period of motion is 0.25 s. 

Using At = 0.00025 s, we ran the code for 4000 time steps, four periods, up to 
t=ls. 

Figure 4 shows the particle trajectory of the point X,,. These curves were traver- 
sed from right to left as time progressed from f = 0 to t = 1 s. After some 
acceleration and irregularity in the first period, we see that the trajectories have 
settled into a steady, periodic motion. 

The mean swimming velocity of the organism is computed by averaging the x- 
direction velocity of each point over a period, and then taking the average of these. 

TRRJECTBRY OF l/2 PBINT 
ERGRNISM FRRHE 0F REF. 

FIG. 6. In the frame of reference moving with the organism, trajectory of the material Xti from I = 0 
to t = 1 s in the small amplitude case b = 0.002 cm. 
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FIG. 7. Position of filament and streamlines of velocity field at I = 1 s. Dimensions of rectangle are 
0.4 cm x 0.2 cm. 

Figure 5 shows the mean swimming speed in each of the four periods. Note the 
acceleration from rest in the first period, and then the establishment of a steady 
swimming speed. 

As was discussed in the previous section, G. I. Taylor [3] discovered that for 
small amplitude motion, the material points of the waving filament will traverse 
paths of narrow figure eights in the frame of reference moving with the organism. 
Since we have calculated the mean swimming velocity U, we re-plot the material 
point trajectory of Fig. 4 in this frame of reference 

x’=x- ut 

y’= Y 

t’ = t. 

This is shown in Fig. 6. 
The progress made in the direction of swimming after one second in this small 

FIG. 8. Pressure contours at t = 1 s. 
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amplitude case is less than one-half of one mesh spacing. We therefore do not show 
successive snapshots of the motion in time. Figure 7 shows the streamlines of the 
velocity field with the immersed boundary at t = 1 s. Figure 8 shows the pressure 
contours of the fluid at t = 1 s. Since periodic boundary conditions were used, both 
Figs. 7 and 8 are comprised of two domains placed side by side. The pressure 
gradient is supported mainly by the immersed boundary. Therefore, near this boun- 
dary, which appears to the fluid grid as a straight line, there are many contour 
levels. The dark line in the center of the contour plot was not explicitly drawn in, 
but put there by the contour-drawing package. 

We have checked to see how closely the constraints imposed by the energy 
function were enforced by the configuration of points after 4000 time steps at t = 1. 
The average relative error in arc length 

1 M-i II&+,-&II-As 

Zi M-1 k=, AS 

at t = 1 was computed to be 0.00017. The average relative error in adhering to the 
sine wave 

M ~y,-(0.1+0.002sin((k-1)As*10?c-8~))~ 

a& 0.002 

at t = 1 was computed to be 0.014. 

MERN DISSIPf3TI0N OF ENERGY 
ORSHE illuE - MEON RRTE OF ivBRK,~ti 

I 

I A- 

“.“J 1.00 I.“U 3.“” 4.00 

PERIBD 

FIG. 9. The mean dissipation of energy and the mean rate of working averaged over each of the four 
periods. Once the system has reached a steady periodic state, apart from discretization error, the two 
should be equal. 
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The rate of working of the organism on the fluid is given by 

5 f.Uds, 

where the integration is over the immersed boundary, f is the force density, and U 
is the velocity defined on the boundary. 

The dissipation of energy in the fluid is given by 

where the integration is over the fluid domain, u = (ul, u2) is the fluid velocity field, 
and the summation convention is used. 

The two integrals above are related by the energy identity 

f($ j ,u,‘dx)+f j(z+z)*dx= jfUds. 

Assuming the motion has settled down to a periodic state, averaging each of the 
integrals in the above identity over a period tells us that the mean rate of working 
is equal to the mean dissipation of energy, (Over a period, the average rate of 
change of kinetic energy is zero.) 

The integrals for the rate of working and the dissipation of energy are discretized 
into Riemann sums and computed at each time step. Each of these quantities is 
averaged over a period. This is a good check of the numerical method, since the 
integral for the rate of working involves boundary quantities, and the integral for 
the dissipation of energy involves fluid quantities. Figure 9 shows the mean dis- 
sipation of energy vs period and the mean rate of working vs period. Note that the 
two quantities differ appreciably after one period, since the motion had not reached 
an equilibrium; the mean rate of change of kinetic energy was not zero. However, 
after the motion has settled down, the two quantities are almost equal, the dif- 
ference being due to discretization errors. 

8.2. Large Amplitude Case 

This numerical experiment is the same as the foregoing except that the amplitude 
of the swimming motion is ten times larger: 

b = 0.02 cm. 

The time step used here is At = 0.00005 s (5 times smaller than above). We ran 
the code for 40,000 time steps, eight periods, up to t = 2 s. 

Figures 10 and 11 show snapshots of the streamlines of the flow and the position 
of the organism during the first and eighth period of motion. Since the boundary 
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FIG. 10. Period 1. Snapshots of streamlines of flow field and position of filament at equally spaced 
time steps within the first period f  = 0 to t = 0.25 s. 
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FIG. 11. Period 8. Snapshots of streamlines of flow field and position of filament at equally spaced 
time steps within the eighth period t = 1.75 to f  = 2 s. 
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conditions are periodic, each snapshot is comprised of two domains. The wave goes 
over the filament from left to right, and the resulting swimming motion is to the left. 
Each figure contains ten graphs at equally spaced time intervals in the period. Note 
that as time progresses, the organism “leaves from the left and enters through the 
right.” 

Figure 12 shows snapshots of the streamlines of the velocity field and the pressure 
contour of the fluid at time t = 0.00005 s. Again, the position of the immersed boun- 
dary in the pressure contour was not explicitly drawn, but was provided by the 
routine which graphed the contour levels. 

The desired configuration is not held as closely in this particular case as in the 
previous small amplitude case. The average relative error in arc length at t = 1 is 
0.0054 and at t = 2 is 0.0053. The average relative error in adhering to the sine wave 
at t = 1 is 0.42, and at t = 2 is 0.85. The tail tends to move with larger amplitude 
than the rest of the body. Since the front of the filament faces drags, the tail is 
pushing forward and, hence, has the larger amplitude. If one seeks to enforce the 
constraints to a greater degree, the stiffness constants must be increased. 

FIG. 12. Streamlines of velocity field and pressure contours at t = 0.0005 s. Dimensions of rectangles 
are 0.4 cm x 0.2 cm. 
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9. CONCLUSIONS 

We have presented a new numerical model of aquatic animal locomotion, which 
has proven to be reliable in two dimensions. The results compare quite favorably 
with previous theoretical results, as shown in Section 7. However, the restrictive 
assumptions made in the asymptotic methods are not at all necessary in our model. 
The computational creatures need not be infinitely long and their swimming 
motions are not of infinitely small amplitude. Moreover, this computational model 
makes it possible to study more complicated motions such as a wave motion with 
an amplitude and/or a wavelength that varies from head to tail. In short, the com- 
putational approach makes it feasible to study models that are realistic enough to 
do justice to nature’s complexity of design. 

We are confident that this method will help answer many questions about the 
hydrodynamics of swimming. Within the scope of two dimensions, we are presently 
investigating the effect of variable amplitude on the efficiency of swimming, and the 
interaction of neighboring flagella (phase-locking). We hope to extend this model to 
three dimensions in the immediate future. 

ACKNOWLEDGMENTS 

This work is supported in part by the National Science Foundation Grant DMS-8312229 and by the 
Mac Arthur Foundation. 

REFERENCES 

1. J. L. LIGHTHILL, Mathematical Biofluiddynamics, Regional Conference Series in Applied Mathematics 
(SIAM, Vol. 17, Philadelphia, PA, 1975). 

2. S. CHILDRESS, Mechanics of Swimming and Flying (Cambridge Univ. Press, London, 1981). 
3. G. I. TAYLOR, Proc. R. Sot. Ser. A 209, 447 (1951). 
4. E. 0. TUCK, J. Fluid Mech. 31, 305 (1968). 
5. C. S. PESKIN, J. Compui. Phys. 25, 220 (1977). 
6. A. J. CHORIN, Math. Comput. 22, 745 (1968). 
7. J. E. DENNIS AND R. E. SCHNABEL, Numerical Merhods for Unconsrrained Optimization and Nonlinear 

Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983). 
8. L. FAUCI, Thesis, Courant Institute of Mathematical Sciences, New York, NY, October, 1986 

(unpublished). 


